

 Page 23 of 31

Appendix D - HHC 2008 Programming Contest Page 1 of 6 pages
Gene Wright

Consider the points on a grid of equilateral triangles as shown below. Note that if the points are numbered from left
to right and top to bottom, then groups of these points form the vertices of certain geometric shapes. For example,
the sets of points 1, 2 ,3 and 7, 9, 18 are the vertices of triangles, the sets 11,13,24,26 and 2,7,9,18 are the vertices
of parallelograms, and the sets 4, 5, 9, 13, 12, 7 and 8, 10, 21, 34, 32, 17 are the vertices of hexagons.

Write a program named A which will accept a set of points on this triangular grid, analyze it and determine whether
the points are vertices of a triangle, parallelogram, hexagon or an illegal figure. In order for a figure to be
acceptable, it must meet two conditions:

1) Each side of the figure must coincide with an edge in the grid, and

2) All sides of the figure must be of the same length.

INPUT: The input will consist of a series of point sets. Each point set will have at most six points in a set. The
points in the set are limited to the range of 1 through 105.

35s (or other RPN model): Input will be done one point at a time. Each point will be keyed and R/S will
be pressed. A -1 will be entered when all data points are entered and R/S will be pressed. The input for the data set
{ 1 2 3 } would be SHIFT CLEAR VARS then 1 STO A 2 STO B 3 STO C 1 CHS STO D. Variables A through G
might be used in this manner. The last register used (in order) would contain the -1 value. Running the program
will be done after storing the inputs by XEQ A ENTER.

50g (or other RPL model): The stack will be clear except for a list containing the data points. The input for the
sample data set { 1 2 3 } would be { 1 2 3 } placed on a clear stack. Running the program will be done by pressing:
VAR then the menu label A. USER RPL only. No unsupported entry points, System RPL, etc.

 Page 24 of 31

Appendix D - HHC 2008 Programming Contest Page 2 of 6 pages

OUTPUT:

35s (or other RPN model): Display a 0 if the set is an invalid figure. Display a 1 if the set is a triangle. Display a 2
if the set is a parallelogram. Display a 3 if the set is a hexagon.

50g (or other RPL model): Display “ERROR”, “TRIANGLE”, “PARALLELOGRAM”, or “HEXAGON”,
appropriately.

TEST: Fastest total time to evaluate a set of input test cases. Decision of the judge is ABSOLUTELY final.

==

The contest generated only a handful of entries, perhaps because of the apparent complexity of the problem or
perhaps because of the full schedule of the conference.

There were two classes of machines eligible: RPL (any) and RPN (any). Only four entries were received, two in
each category.

Only one machine (a 50g) correctly solved all input problems. That was the winner of course. Allen Thomson. He
correctly solved all 7 input cases in about 12 seconds. Timing wasn't as critical, since his program was the only one
that worked in all cases.

One note: The hexagons in the problem are to be regular hexagons - no internal pointing sides.

Perhaps most interestingly, when this problem was posted to the HP Museum forum after the contest,
quite a bit of interest ensued. Several of these were posted to the forum at this link:

http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/archv018.cgi?read=141243

A couple of the more interesting programs generated there are reproduced below. Both of these are by Egan Ford.

Fast RPL solution #1

HHC 2008 Programming Contest (and a tip for future UserRPL optimization)
Message #40 Posted on the HP Museum websit3 by Egan Ford on 12 Oct 2008, 12:43 p.m.,

I got the time down to 1.25 seconds for all 7 problems. An incredible 2x+ increase in
performance. And that is Gjermund's UserRPL tip: Floats are faster than Ints.

Thanks Gjermund!

The changes:

 1. Added a . (dot) after each integer.
 2. Converted the input list to floats (I->R after SORT).

%%HP: T(3)A(R)F(.);
\<< SORT I\->R \-> p
 \<< "ERROR" p SIZE
 CASE DUP 3. ==
 THEN DROP p OBJ\-> \-> a b c r
 \<<
 b 8. * 1. + \v/ 1. - 2. / CEIL 'r' STO
 c b - b a - >
 IF
 THEN

 Page 25 of 31

Appendix D - HHC 2008 Programming Contest Page 3 of 6 pages

 a r r 1. - * 2. / >
 IF
 THEN
 b a - DUP r 2. * + 1. - * 2. / b + c ==
 IF
 THEN DROP "TRIANGLE DOWN"
 END
 END
 ELSE
 c r r 1. + * 2. / \<=
 IF
 THEN
 b c b - DUP NEG r 2. * + 1. - * 2. / - a ==
 IF
 THEN DROP "TRIANGLE UP"
 END
 END
 END
 \>>
 END DUP 4 ==
 THEN DROP p OBJ\-> \-> a b c d r
 \<<
 c 8. * 1. + \v/ 1. - 2. / CEIL 'r' STO
 b r r 1. - * 2. / >
 IF
 THEN
 c b - DUP r 2. * + 1. - * 2. / c + d ==
 IF
 THEN b c b - DUP NEG r 2. * + 1. - * 2. / - a ==
 IF
 THEN DROP "PARALLELOGRAM DIAMOND"
 END
 END
 ELSE d c - b a - ==
 IF
 THEN d r r 1. + * 2. / \<=
 IF
 THEN
 b 8. * 1. + \v/ 1. - 2. / CEIL 'r' STO
 a r r 1. - * 2. / >
 IF
 THEN
 b a - DUP r 2. * + 1. - * 2. / b + d ==
 IF
 THEN DROP "PARALLELOGRAM LEFT"
 ELSE
 b a - DUP r 1. + 2. * + 1. - * 2. / b + d ==
 IF
 THEN DROP "PARALLELOGRAM RIGHT"
 END
 END
 END
 END
 END
 END
 \>>
 END 6 ==
 THEN p OBJ\-> \-> a b c d e f r
 \<< f e - b a - ==
 IF
 THEN f e - 2. * d c - ==
 IF
 THEN
 f 8. * 1. + \v/ 1. - 2. / CEIL 'r' STO

 Page 26 of 31

Appendix D - HHC 2008 Programming Contest Page 4 of 6 pages

 e r r 1. - * 2. / >
 IF
 THEN
 b 8. * 1. + \v/ 1. - 2. / CEIL 'r' STO
 a r r 1. - * 2. / >
 IF
 THEN
 b a - DUP r 2. * + 1. - * 2. / a + c ==
 IF
 THEN
 r b a - + 'r' STO
 b a - DUP r 2. * + 1. - * 2. / d + f ==
 IF
 THEN DROP "HEXAGON"
 END
 END
 END
 END
 END
 END
 \>>
 END
 END
 \>>
\>>

Fast RPN solution. About 44 seconds on an HP 41CX.
HHC 2008 Programming Contest -- anyone want to try an RPN solution? Message #22 Posted on HP
Museum website by Egan Ford on 4 Oct 2008, 3:55 a.m.,

01 LBL "SETUP" 134 * 267 1 400 RCL 02
02 0 135 2 268 + 401 8
03 SETSW 136 / 269 SQRT 402 *
04 CLRG 137 RCL 01 270 1 403 1
05 11 138 X<=Y? 271 - 404 +
06 STO 09 139 GTO 20 272 2 405 SQRT
07 0 140 RCL 02 273 / 406 1
08 RTN 141 RCL 01 274 STO 07 407 -
09 LBL "FS" 142 - 275 FRC 408 2
10 FIX 00 143 ENTER 276 X=0? 409 /
11 CF 29 144 ENTER 277 GTO 09 410 STO 07
12 CLA 145 RCL 07 278 RCL 07 411 FRC
13 >"NUM PTS?" 146 2 279 1 412 X=0?
14 PROMPT 147 * 280 + 413 GTO 13
15 INT 148 + 281 INT 414 RCL 07
16 STO 00 149 1 282 STO 07 415 1
17 1000 150 - 283 LBL 09 416 +
18 / 151 * 284 RCL 07 417 INT
19 1 152 2 285 1 418 STO 07
20 + 153 / 286 - 419 LBL 13
21 STO 10 154 RCL 02 287 RCL 07 420 RCL 07
22 LBL 00 155 + 288 * 421 1
23 CLA 156 RCL 03 289 2 422 -
24 >"PT " 157 X#Y? 290 / 423 RCL 07
25 ARCL 10 158 GTO 20 291 RCL 01 424 *
26 >"?" 159 CLA 292 X<=Y? 425 2
27 PROMPT 160 >"TRIANGLE DOWN” 293 GTO 20 426 /
28 INT 161 2 294 RCL 02 427 RCL 01
29 STO IND 10 162 STO 08 295 RCL 01 428 X<=Y?
30 ISG 10 163 GTO 20 296 - 429 GTO 20
31 GTO 00 164 LBL 06 297 ENTER 430 RCL 06
32 RUNSW 165 0 298 ENTER 431 RCL 05
33 FIX 04 166 4 299 RCL 07 432 -
34 RCL 00 167 X#NN? 300 2 433 ENTER

 Page 27 of 31

Appendix D - HHC 2008 Programming Contest Page 5 of 6 pages

35 1000 168 GTO 11 301 * 434 ENTER
36 / 169 RCL 03 302 + 435 RCL 07
37 1 170 8 303 1 436 2
38 + 171 * 304 - 437 *
39 SIGN 172 1 305 * 438 +
40 LBL 01 173 + 306 2 439 1
41 LASTX 174 SQRT 307 / 440 -
42 LASTX 175 1 308 RCL 02 441 *
43 RCL IND L 176 - 309 + 442 2
44 LBL 02 177 2 310 RCL 04 443 /
45 X<=NN? 178 / 311 X#Y? 444 RCL 01
46 GTO 03 179 STO 07 312 GTO 10 445 +
47 X<>Y 180 FRC 313 CLA 446 RCL 03
48 STO Y 181 X=0? 314 >"PARALLELOGRAM" 447 X#Y?
49 RCL IND X 182 GTO 07 315 >" LEFT" 448 GTO 20
50 LBL 03 183 RCL 07 316 4 449 RCL 06
51 ISG Y 184 1 317 STO 08 450 RCL 05
52 GTO 02 185 + 318 GTO 20 451 -
53 X<> IND L 186 INT 319 LBL 10 452 ST+ 07
54 STO IND Z 187 STO 07 320 1 453 ENTER
55 ISG L 188 LBL 07 321 ST+ 07 454 ENTER
56 GTO 01 189 RCL 07 322 RCL 02 455 RCL 07
57 CLA 190 1 323 RCL 01 456 2
58 >"ERROR" 191 - 324 - 457 *
59 0 192 RCL 07 325 ENTER 458 +
60 STO 08 193 * 326 ENTER 459 1
61 0 194 2 327 RCL 07 460 -
62 3 195 / 328 2 461 *
63 X#NN? 196 RCL 02 329 * 462 2
64 GTO 06 197 X<=Y? 330 + 463 /
65 RCL 02 198 GTO 08 331 1 464 RCL 04
66 8 199 RCL 03 332 - 465 +
67 * 200 RCL 02 333 * 466 RCL 06
68 1 201 - 334 2 467 X#Y?
69 + 202 ENTER 335 / 468 GTO 20
70 SQRT 203 ENTER 336 RCL 02 469 CLA
71 1 204 RCL 07 337 + 470 >"HEXAGON"
72 - 205 2 338 RCL 04 471 6
73 2 206 * 339 X#Y? 472 STO 08
74 / 207 + 340 GTO 20 473 LBL 20
75 STO 07 208 1 341 CLA 474 STOPSW
76 FRC 209 - 342 >"PARALLELOGRAM" 475 RCL 08
77 X=0? 210 * 343 >" RIGHT" 476 STO IND 09
78 GTO 04 211 2 344 5 477 1
79 RCL 07 212 / 345 STO 08 478 ST+ 09
80 1 213 RCL 03 346 GTO 20 479 AVIEW
81 + 214 + 347 LBL 11 480 RTN
82 INT 215 RCL 04 348 0 481 LBL "PRINT"
83 STO 07 216 X#Y? 349 6 482 RCL 09
84 LBL 04 217 GTO 20 350 X#NN? 483 1
85 RCL 02 218 RCL 03 351 GTO 20 484 -
86 RCL 01 219 RCL 02 352 RCL 06 485 1000
87 - 220 - 353 RCL 05 486 /
88 RCL 03 221 ENTER 354 - 487 11
89 RCL 02 222 ENTER 355 RCL 02 488 +
90 - 223 CHS 356 RCL 01 489 STO 10
91 X>Y? 224 RCL 07 357 - 490 LBL 21
92 GTO 05 225 2 358 X#Y? 491 CLA
93 RCL 07 226 * 359 GTO 20 492 RCL IND 10
94 1 227 + 360 RCL 06 493 30
95 + 228 1 361 RCL 05 494 +
96 RCL 07 229 - 362 - 495 INT
97 * 230 * 363 2 496 GTO IND X
98 2 231 2 364 * 497 LBL 30

 Page 28 of 31

Appendix D - HHC 2008 Programming Contest Page 6 of 6 pages

99 / 232 / 365 RCL 04 498 >"ERROR"
100 RCL 03 233 RCL 02 366 RCL 03 499 GTO 40
101 X>Y? 234 X<>Y 367 - 500 LBL 31
102 GTO 20 235 - 368 X#Y? 501 >"TRIANGLE UP"
103 RCL 03 236 RCL 01 369 GTO 20 502 GTO 40
104 RCL 02 237 X#Y? 370 RCL 06 503 LBL 32
105 - 238 GTO 20 371 8 504 >"TRIANGLE DOWN"
106 ENTER 239 CLA 372 * 505 GTO 40
107 ENTER 240 >"PARALLELOGRAM" 373 1 506 LBL 33
108 CHS 241 >" DIAMOND" 374 + 507 >"PARALLELOGRAM"
109 RCL 07 242 3 375 SQRT 508 >" DIAMOND"
110 2 243 STO 08 376 1 509 GTO 40
111 * 244 GTO 20 377 - 510 LBL 34
112 + 245 LBL 08 378 2 511 >"PARALLELOGRAM"
113 1 246 RCL 04 379 / 512 >" LEFT"
114 - 247 RCL 03 380 STO 07 513 GTO 40
115 * 248 - 381 FRC 514 LBL 35
116 2 249 RCL 02 382 X=0? 515 >"PARALLELOGRAM"
117 / 250 RCL 01 383 GTO 12 516 >" RIGHT"
118 RCL 02 251 - 384 RCL 07 517 GTO 40
119 X<>Y 252 X#Y? 385 1 518 LBL 36
120 - 253 GTO 20 386 + 519 >"HEXAGON"
121 RCL 01 254 RCL 07 387 INT 520 LBL 40
122 X#Y? 255 1 388 STO 07 521 AVIEW
123 GTO 20 256 + 389 LBL 12 522 ISG 10
124 CLA 257 RCL 07 390 RCL 07 523 GTO 21
125 >"TRIANGLE UP" 258 * 391 1 524 FIX 06
126 1 259 2 392 - 525 RCLSW
127 STO 08 260 / 393 RCL 07 526 CLA
128 GTO 20 261 RCL 04 394 * 527 >"TIME: "
129 LBL 05 262 X>Y? 395 2 528 ATIME24
130 RCL 07 263 GTO 20 396 / 529 AVIEW
131 1 264 RCL 02 397 RCL 05 530 RTN
132 - 265 8 398 X<=Y? 531 END
133 RCL 07 266 * 399 GTO 20

HHC 2009 Programming Challenge

Finding partial sums of rows of Pascal's Triangle

1
1 1

121

133 1

1 4 641

etc

Write an HPSOg program which takes a positive integer n of any size in level 2 and any

integer r in level 1 and returns the sum of C(n,O) + C(n,l) + ... + C(n,r) to level 1. The
n

output should be 0 for r < 0 and 2 for r ~n.

The program will be transferred from your HPSOg to the judges' HPSOg and will be

tested (in exact mode) for a selection of values of nand r chosen by the judges. The

fastest program wins.

The usual rules apply:

• 	 The program must be in user code only

• 	 The program must be self-contained

• 	 The program must leave the stack unchanged except for replacing nand r with

the result.

• 	 Default flag settings are assumed, except that RPN mode must be set. Flag

settings must be restored if changed.

• 	 The judges' decision is final.

Have fun!

I~' HH[2~~g of·1

---_.. -- ­__...

HHC 2011 RPN Programming Contest
September 24-25 / 2011 San Diego

Problem Description: Did you know that if you draw a circle that fills the screen on your 1080p high
definition display, almost a million pixels are lit? That’s a lot of pixels! But do you know exactly how many
pixels are lit? Let’s find out!

Assume the display is set on a Cartesian grid where every
pixel is a perfect unit square. For example, one pixel
occupies the area of a square with corners (0,0) and (1,1). A
circle can be drawn by specifying its center in grid
coordinates and its radius. A pixel on the display is lit if any
part of is covered by the circle; pixels whose edge or corner
are just touched by the circle, however, are not lit.

You must compute the exact number of pixels “lit” when a
circle with a given position and radius is drawn.

Input: Each test case consists of three integers, x, y, and r (1
≤ x, y, r ≤ 5000), specifying respectively the center (x, y) and
radius of the circle drawn. The radius will be loaded into
stack register Z, the y coordinate of the center of the circle
into stack register Y, and the x coordinate of the circle into
stack register X. Assume successive program runs are to be started by simply entering new values and
pressing R/S. Assume that all circles fit on the display panel even if in reality they would not.

Output: Return the number of pixels that are lit when the specified circle is drawn.

Sample Cases: (A) Input of 1 ENTER 1 ENTER 1 R/S should return 4. This represents a circle with a
center of (1,1) and a radius of 1. The display would have 4 pixels “on” to represent this circle. (B) Input of
5 ENTER 2 ENTER 5 R/S should return 88. This represents a circle with a center of (5,2) and a radius of
5. The display would have 88 pixels “on” to represent this circle. This is the circle shown in the figure
above. 88 pixels are “on” in this picture.

Machines Eligible: This contest is open to any and all RPN machines: 15c, 15c+, 15c LE, 34S, 41CL,
42S, 67, 65, etc. RPL users are welcome to try the problem, but this is for RPN machines only.

Rules: (aka the fine print)
1) The decision of the judge is FINAL. No appeals are allowed to anyone or anything.
2) The purpose of this contest is to have fun and learn.
3) At least two contestants must submit an entry.
4) No custom built ROM or machine code can be built and used for this problem. Any already existing functionality in the machine is ok.
5) You must submit a machine with your program already keyed in to the judge AS WELL as a legible listing of your program with your name
on the listing AND the machine. Machines with no names that are given to the judge are assumed to be gifts to the judge. Thank you!
6) Submission must be made by the end of the contest (Time is TBA).
7) Assume the program will start running with step 001 and/or a R/S.
8) By submitting a program, you agree to allow it to be shared with the community.
9) This is a contest between individuals, not teams. One submittal <> one person.
10) You may not access the internet for any help in any fashion. Do not cheat in any way. Do not check the HP Museum Forum either.
11) You must be present to win.
12) If a point is unclear, ask immediately. No excuses for ignorance. Clarifications will be shared with the entire group during the conference.
13) Assume default machine settings. Your program must stop with the default settings in place.
14) Winner will be the program with the fastest times over the test cases giving correct results. If in the judge’s sole discretion, two entries are
“about the same speed,” the winner will be the shortest routine. In case of a tie, the most elegant solution (according to the judge) wins.
15) The purpose of this contest is to learn and have fun. Happy Programming.
	

HHC 2011 Programming Contest

The Problem

Write a program for the HP50g in RPN Mode which takes a non-empty string of any length consisting of

some or all of the 26 letters A, B, C … Z and returns, as a type 28 integer, the exact number of distinct

arrangements of these letters in the string. (Permuting multiple occurrences of the same letter does not

change the arrangement.)

Examples

 "DEEDED" −−> 20

 "ANTITRINITARIAN" −−> 126126000

 "ABCDEFGHIJKLMNOPQRST" −−> 2432902008176640000

 “AAAAABBBBBCCCCCDDDDDEEEEE" −−> 623360743125120

Note that these results are 6!/3!3!, 15!/3!3!3!4!2!, 20!/1!^20 and 25!/5!^5 respectively.

The Rules

1. The program must be a (self-contained) single object in user code which does not call it self by name.

2. Default flag settings (except for flag –95) are assumed and must be restored if changed.

3. The stack, apart from input and output, must be left as found.

4. The program must not contain KILL or otherwise interfere with the programmatic testing and

evaluation of submissions.

5. Your program must be transferred to the judge’s machine under some identifying three-letter name

before the announced deadline.

6. The winning program will be the one for which size*speed (bytes*sec) is least, where the speed of

execution will be determined for one or more longer input strings, probably of several hundred letters,

chosen by the judge.

7. The purpose of the contest is to have fun and the decision of the judge is final.

Page 1 of 4

Results of the HHC 2011 Programming Contest for the HP 50g

Bill Butler

The winner was Roger Hill and the runner-up Jacob Wall.

The announced deadline was by lunch Sunday and submissions were received and judged by Bill Butler

(who, in turn, is submitting this report).

There were six entries – in order of submission ghs, DMH, JW4, ELS, CDB and RCH. Four were

determined to work as required. The remaining two were ELS which gave results as type 0. integers (and

hence rounded-off rather than exact answers) and ghs which left the input on the stack contrary to (at least

the intention of) the instructions although it could be argued that these instructions were not sufficiently

explicit about this. Fortunately for the judging the program in question would not otherwise have won.

Corrections for these two programs involve but one extra command each – for ELS insert R−−>I between

the first SIZE and FACT and for ghs append NIP at the end. The resulting amended programs ES2 and

gs2 are listed below and will be included in the comparisons along with two additional programs CB2 and

CB3 submitted by Cyrille de Brebisson after the deadline, but before the results were announced (to see

how they would have fared), understanding that they were not part of the competition. Also included are

four test programs of mine from before the contest, written of course with no pressure, adequate sleep and

unlimited time. All twelve programs pass my initial test run with eight carefully chosen inputs including

the four examples given. The timing itself was for strings consisting of repetitions of A through Z cut off

at 200, 400 and 600 characters respectively. (The outputs are integers of 263, 542 and 823 digits

respectively.) Run times (sec) and scores (bytes*sec) are given for these twelve programs and three

inputs where it is understood that only the four first-listed programs were actually in the running. It is of

interest that these four programs ranked in order of decreasing size. Available memory for the timing was

around 200K although memory is not particularly at issue here.

 200 chars 400 chars 600 chars

 RCH 6E69h 142. 4.095 581.4 9.140 1297.9 15.347 2179.3

 JW4 555h 141. 4.590 647.2 11.689 1648.1 23.279 3282.4

 CDB 471h 135. 4.507 608.5 13.510 1823.8 26.179 3534.1

 DMH 4B5Dh 127. 12.839 1630.6 33.453 4248.5 61.103 7760.1

 ES2 980Bh 124. 8.168 1012.9 19.348 2399.2 34.888 4326.1

 gs2 6378h 136. 9.029 1228.0 20.961 2850.7 37.573 5110.0

 CB2 522Bh 98.5 2.240 220.6 8.404 827.8 18.191 1791.8

 CB3 D71Ch 78. 2.169 169.2 8.332 649.9 18.120 1413.4

 XX1 8566h 63. 2.162 136.2 8.327 524.6 18.106 1140.7

 XX2 4F57h 74.5 2.074 154.5 4.881 363.6 8.540 636.3

 XX3 1D0Fh 80.5 2.028 163.2 4.707 378.9 8.233 662.7

 XX4 1564h 80.5 2.041 164.3 4.722 380.1 8.345 671.8

Listings for the twelve programs follow. All involve interesting ideas and techniques and one can learn

from them all. The character "■" in Roger’s program is character 26. (although simply using the integer

26 at 6.5 bytes for "■" NUM would have fared better). The empty strings "" in programs XX1 through

XX4 have been entered as counted strings C$ 0 at a saving of 2.5 bytes although it is noted that they

would have to be so re-entered whenever the programs are edited.

Page 2 of 4

RCH #6E69h 142.

<< 0. DUP 5. SQ NDUPN 2. +

 ROLL DUP SIZE DUP R−−>I UNROT 1 SWAP

 START DUP NUM 61. – DUP PICK

 1. + SWAP 1. – UNPICK TAIL

 NEXT DROP 1 1. "■" NUM

 START UNROT SWAP R−−>I DUP2 –

 UNROT COMB ROT *

 NEXT + >>

JW4 #555h 141.

<< { } 1 PICK3 SIZE DUP R−−>I ! 5 ROLLD

 FOR i OVER i DUP SUB DUP2 POS

 IF THEN DROP ELSE + END

 NEXT 1 DUP PICK3 SIZE

 FOR i ROT PICK3 i GET "" SREPL

 R−−>I ! ROT * ROT SWAP

 NEXT NIP NIP / >>

CDB #471h 135.

<< 0 26. NDUPN 1. + ROLL 1. OVER SIZE

 FOR A DUP A DUP SUB NUM 62. – DUP

 ROLL 1 + SWAP 1. – ROLLD

 NEXT SIZE R−−>I ! 1. 26.

 FOR A SWAP ! / NEXT >>

DMH #4B5Dh 127.

<< 1 SWAP 0. 26. NDUPN −−>ARRY OVER SIZE 1. SWAP

 FOR I OVER I DUP SUB NUM 64. – DUP2 GET 1. +

 PUT LASTARG 6. ROLL I R−−>I * SWAP R−−>I /

 NIP NIP UNROT

 NEXT DROP2 >>

ES2 #980Bh 124.

<< −−> S

 << S SIZE R−−>I FACT { 0 } 1 5

 START DUP + NEXT 1 S SIZE

 FOR I S I DUP SUB NUM 64 –

 DUP2 GET 1 + PUT

 NEXT FACT ΠLIST / >> >>

gs2 #6378h 136.

<< DUP { } 1 26 FOR K 0 + NEXT

 OVER SIZE R−−>I UNROT PICK3 1 SWAP

 FOR K OVER HEAD NUM 64 – DUP2

 GET 1 + PUT SWAP TAIL SWAP

 NEXT FACT ΠLIST SWAP DROP

 SWAP FACT SWAP / NIP >>

Page 3 of 4

CB2 #522Bh 98.5

<< DUP SIZE R−−>I ! SWAP 64.

 WHILE 1. + OVER SIZE

 REPEAT SWAP OVER CHR "" SREPL R−−>I !

 4. ROLL SWAP / ROT ROT SWAP

 END DROP2 >>

CB3 #D71Ch 78.

<< DUP SIZE R−−>I ! SWAP

 WHILE DUP SIZE

 REPEAT DUP 1. 1. SUB "" SREPL

 R−−>I ! ROT SWAP / SWAP

 END DROP >>

XX1 #8566h 63.

<< DUP SIZE R−−>I !

 WHILE SWAP DUP NUM CHR "" SREPL

 ROT OVER R−−>I ! ROT

 REPEAT /

 END UNPICK >>

XX2 #4F57h 74.5

<< 1 SWAP DUP SIZE 1.

 FOR j DUP NUM CHR "" SREPL

 ROT j R−−>I PICK3 R−−>I COMB * UNROT NEG

 STEP DROP >>

XX3 #1D0Fh 80.5

<< 1 OVER SIZE R−−>I ROT

 DO DUP NUM CHR "" SREPL ROT OVER R−−>I

 DUP2 COMB 6. ROLL * 5. ROLLD – UNROT

 UNTIL NOT

 END DROP2 >>

XX4 #1564h 80.5

<< 1 0 ROT 1. OVER SIZE

 START DUP NUM CHR "" SREPL R−−>I ROT OVER +

 UNROT PICK3 OVER COMB 5. ROLL * 4. ROLLD

 STEP DROP2 >>

There are two main ideas here and a variety of useful techniques. First, the command SREPL (new with

the HP 49G) can be used to count how often each letter occurs in the string. SREPL not only replaces

each occurrence of the substring in level 2 of the string in level 3 with the string in level 1 but also counts

the number of times the replacement occurs. For example one has

 "ABCDBC" "BC" "X" −−> "AXDX" 2.

David Hayden remarked afterwards that this counting is undocumented. The command itself is certainly

described in the AUR but with an incorrect (incomplete) output listed. (Of course anyone who has used

Page 4 of 4

the command would be aware of this.) The second idea is that these multinomial coefficients can

otherwise be viewed (in many ways), and be more effectively calculated, as the product of binomial

coefficients – for example:

 (a+b+c)! / a! b! c! = COMB (a+b+c , a) * COMB (b+c , b) * COMB (c , c)

Of the six actual submissions only Jacob Wall used the first idea and only Roger Hill the second. (David

Hayden calculated these numbers progressively without using either ! or COMB.) CB2, CB3 and XX1

all use the first idea – indeed XX1 is essentially the same as CB3 shortened by 15 bytes worth of technical

sleights of hand. Using both ideas together leads to my programs XX2-XX4 (and many others) with their

resulting better performances.

Note that JW4, CB3 and XX1-XX4 all work for arbitrary strings of any characters, not just those

containing only A through Z. The length of the strings (after a certain point) does not affect comparative

speeds all that much – the number of distinct characters they contain does, however. Testing these six

programs on strings of 600 characters which cycle through all 256 characters (the output has 1290 digits)

leads to the following comparison with the previous results where only the 26 letters A through Z were

used.

 (Strings of length 600) 26 different chars 256 different chars

 JW4 555h 141. 23.279 3282.4 62.395 8797.7

 CB3 D71Ch 78. 18.120 1413.4 39.237 3060.5

 XX1 8566h 63. 18.106 1140.7 39.101 2463.4

 XX2 4F57h 74.5 8.540 636.3 24.974 1860.5

 XX3 1D0Fh 80.5 8.233 662.7 20.767 1671.8

 XX4 1564h 80.5 8.345 671.8 20.543 1653.7

It is noted that the relative performance (bytes*sec) of the three programs XX2-XX4 is exactly reversed

when the full range of characters is used. Indeed the reason the problem was posed in the first place with

the restriction to the 26 letters A-Z was not only to allow additional methods (used by five of the six

entries) but also that by so doing a winning program (XX2) more clearly emerges. With regard to XX4

(the best in the last comparison), years ago there was a raging debate as to whether START…STEP (vs.

FOR…STEP) could have any use whatever.

As the person responsible for this contest on this occasion I wish to thank all who took the trouble to enter

(sacrificing precious sleep, time and energy during a very busy conference) and to reiterate that all six

(plus two) entries were interesting – and instructive for anyone who cares to examine them.

O. T. Postscript: About this word “ANTITRINITARIAN” – it is simply the longest word I know

containing no unrepeated letters. Needless to say I would be very interested to learn of any such word

which is longer.

Programming contest

Every HHC has to have a programming contest. We conducted an RPL RPN Programming Contest for
the HP 50g (conducted by Bill Butler) and then a contest for legacy RPN machines (Gene Wright). see
appendix A for the Contest details.

The winner of the legacy RPN contest used the WP 34s. Code:

001 Rv
002 Rv
003 STO 01
004 DSE 01
005 GTO 02
006 GTO 03
007 LBL 02
008 STO 00
009 X^2
010 STO 02
011 LBL 01
012 RCL 02

013 RCL 01
014 X^2
015 -
016 SQRT
017 CEIL
018 STO+00
019 DSE 01
020 GTO 01
021 RCL 00
022 LBL 03
023 4
024 x

The execution time for a radius of 5000 was about 28 seconds.

After the conference, solutions were posted on the HP Museum forum that were faster and for older
machines. For reference the HP 67 found the answer for a radius of 5000 in about 1.4 hours.

The fastest program posted to the museum was for the WP 34S. It solved the 5000 radius problem in just
under 2 seconds, as it was found that integer mode on the WP 34S worked much faster.

001 BASE 10
002 RCL Z
003 FILL
004 STO+ Z
005 RCLx X
006 2
007 /
008 SQRT
009 INC X
010 STO Z
011 STOx Z
012 -
013 RCL T

014 RCL- Y
015 RCLx Y
016 SQRT
017 FS? C
018 INC X
019 SL 1
020 STO+ Z
021 DROP
022 DSE X
023 BACK 10
024 4
025 RCLx Z
026 DECM

HP Solve # 26 Page NN Page 7 of 10

HHC 2012 RPN Progra.mming Contest

September 22-23,2012, Nashville

Problem Description: In the diagram below, each small circle has non-negative integer coordinates in
the usual Cartesian coordinate system. You can move from one circle to another following the path

2 0----0-..::........---10----+------1

1

o I

denoted by the arrow symbols.
y

To move from (0,3) to (3,0), you have to pass
through (1,2) and (2,1) then you arrive at (3,0), 4
so this journey takes 3 "steps."

In this problem, you must compute the minimal
number of steps needed to go from a given .'J

source circle to a given destination circle.

Input: Each test case consists of three
integers, X1, Y1, X2, Y2 where each value is less
than 1,000,000. These will be loaded as
follows: X1 ENTER Y1 ENTER X2 ENTER Y2
then RIS.

Output: Return the minimum number of steps
required with the sign of the iilnswer indicated
forward steps (positive) or backward steps
(negative).

Sample Cases:
(A) Input of 1 ENTER 0 ENTER 1 ENTER 1 RlS should return 3.
(8) Input of 4 ENTER 0 ENTER 3 ENTER 0 RlS should return -4.

Machines Eligible: This contest is open to any and all RPN machines: 15c, 15c+, 15c LE, 34S, 41CL,
42S, 67, 65, etc. RPL users are welcome to try the problem, but this is for RPN machines only.

The winner will be the program that a) returns correct answers, b) has the shortest number of steps x
speed in seconds, or c) if the speed is in the judge's sole opinion. nearly identical. the shortest routine.

Rules: (aka the fine print)

1) The decision of the judge is FINAL. No appeals are allowed to anyone or anything.

2) The purpose of this contest is to have fun and learn.

3) At least two contestants must submit an entry.

4) No custom built ROM or machine code can be built and used for this problem. Any already existing functionality in the machine is ok.

5) You must submit a machine with your program already keyed in to the judge AS WELL as a legible listing of your program with your name

on the listing AND the machine. Machines with no names that are given to the judge are assumed to be gifts to the judge. Thank you!

6) Submission must be made by the end of the contest (Time is TBA).

7} Assume the program will start running with step 001 and/or a RlS.

8) By submitting aprogram. you agree to allow it to be shared with the community.

9} This is acontest between individuals, not teams. One submittal <> one person.

10} You may not access the internet for any help in any fashion. Do not cheat in any way. Do not check the HP Museum Forum either.

11) You must be present to win.

12} If a point is unclear, ask immediately. No excuses for ignorance. Clarifications will be shared with the entire group during the conference.

13) Assume default machine settings. Your program must stop with the default settings in place.

14) Winner will be the program with the fastest times over the test cases giving correct results. If in the judge's sole discretion, two entries are

"about the same speed," the winner will be the shortest routine. In case of a tie, the most elegant solution (according to the judge) wins.

15) The purpose of this contest is to learn and have fun. Happy Programming.

HHC 2012 RPL Programming Contest
September 22-23, 2012, Nashville

Problem Description: The diameter of a set of points on the plain is the distance
between its two most widely separated points. For example, the diameter of this set of
points (1,1) (0,0) (2,3) (3,4) (1,0) is 5, which is the distance between (0,0) and (3,4). Given
a set of points, compute its diameter.

Input: Each test case consists a list of up to 10 pairs of numbers. Each value in the list
will be less than 10,000 in absolute value. The list will contain at least one pair of numbers
and will always contain a multiple of 2 numbers, i.e., there will not be 3 values in the list.

Output: Return the diameter.

Sample Case: Input of {1 1 0 0 2 3 3 4 1 0 } should return 5.

Machines Eligible: This contest is open to any and all RPL machines.

Rules: (aka the fine print)
·1) The decision of the judge is FI NAL. No appeals are allowed to anyone or anything.
2) The purpose of this contest is to have fun and learn.
3) At least two contestants must submit an entry.
4) No custom built ROM or machine code can be built and used for this problem. Any already existing

functionality in the machine is ok. Sysevals, etc are allowed.
5) 	 Your program must be transferred to the judge's machine under some identifying three-letter name before

the announced deadline and you must also submit a legible listing of your program with your name on the
listing.

6) Submission must be made by the end of the contest (Time is TBA).

7) By submitting a program, you agree to allow it to be shared with the community.

8) This is acontest between individuals, not teams. One submittal <> one person.

9) You may not access the internet for any help in any fashion. Do not cheat in any way. Do not check the

HP Museum Forum either.
10) You must be present to win.
11) If apoint is unclear, ask immediately. No excuses for ignorance. Clarifications will be shared with the

entire group during the conference.
12) Assume default machine settings. Your program must stop with the default settings in place.
13) The winning program will be the one for which size*speed (bytes*sec) is least, where the speed of

execution will be determined for one or more test cases chosen by the judge.
14) The program must be a (self-contained) single object in user code which does not call it self by name.
15) Default flag settings (except for flag -95) are assumed and must be restored if changed.
16) The stack, apart from input and output, must be left as found.
17) The program must not contain KILL or otherwise interfere with the programmatic testing and evaluation of

submissions, i.e., you cannot delete everything on the judge's machine except your own programl
18} Happy Programming.

HHC 2013 RPN Programming Contest
September 21-22, 2013, Fort Collins, Colorado

Problem Description: All fractions written in octal (base 8) notation may be expressed exactly in
decimal notation. For example, 0.75 in octal is 0.953125 in decimal. Specifically, a numeral
requiring N octal digits to the right of the octal point may always be written as a decimal number
with no more than 3N digits to the right of the point. The reverse is not always true.

Input: Each test case will consist of a value in octal between 0 and 1, inclusive.

Output: Display the base-10 decimal equivalent to the limits of your machine.

Sample Cases:
(A) 0.5 R/S should return 0.625.
(B) 0.75 R/S should return 0.953125.

Machines Eligible: This contest is open to any and all RPN machines: 15c, 15c+, 15c LE, 34S,
41CL, 42S, 67, 65, etc. RPL users are welcome to try the problem, but this is for RPN machines
only.

The winner will be the program that a) returns correct answers, b) has the shortest number of
steps x speed in seconds, or c) if the speed is in the judge’s sole opinion, nearly identical, the
shortest routine.

Rules: (aka the fine print)
1) The decision of the judge is FINAL. No appeals are allowed to anyone or anything.
2) The purpose of this contest is to have fun and learn and at least two contestants must submit an entry.
3) The speed results for all entries will be “normed” by counting the ticks for a loop. This loop program object will be

loaded into YOUR machine by the judge.
4) No custom built ROM or machine code can be built and used for this problem. Any already existing functionality in

the machine is ok.
5) You must submit a machine with your program already keyed in to the judge AS WELL as a legible listing of your

program with your name on the listing AND the machine. Machines with no names that are given to the judge are
assumed to be gifts to the judge. Thank you!

6) Submission must be made by the end of the contest (Time is TBA).
7) Assume the program will start running with step 001 and/or a R/S.
8) By submitting a program, you agree to allow it to be shared with the community.
9) This is a contest between individuals, not teams. One submittal <> one person.
10) You may not access the internet for any help in any fashion. Do not cheat in any way. Do not check the HP

Museum Forum either.
11) You must be present to win.
12) If a point is unclear, ask immediately. No excuses for ignorance. Clarifications will be shared with the entire group

during the conference.
13) Assume default machine settings. Your program must stop with the default settings in place.
14) Winner will be the program with the fastest times over the test cases giving correct results. If in the judge’s sole

discretion, two entries are “about the same speed,” the winner will be the shortest routine. In case of a tie, the most
elegant solution (according to the judge) wins.

15) The purpose of this contest is to learn and have fun. Happy Programming.
	

HHC 2013 RPL Programming Contest
September 21-22, 2013, Fort Collins, Colorado

Problem Description: Normal base-10 addition involves a carrying step whenever two digits sum to 10 or
greater. For example, in 23 + 49 = 72, the 3 + 9 involves carrying a 1 to the tens unit. In false addition, any
numbers that would be carried are simply dropped. So 23 + 49 = 62, since 3 + 9 = 12 (giving the 2 in the
units place), and 2 + 4 = 6 (ignoring the carried 1).

Input: Integer a in level 3, Integer b in level 2, the base in level 1 of the stack. Note: these will be keyed as
real numbers but will not have any values after the decimal point. Bases entered will be 2, 8, 10 or 16.

Output: The result of false addition of the real numbers a and b in the input base. Your program should
work regardless of the base of the machine when the program is run and your program should stop in the
entered base. This is the only allowable change to the machine’s status.

Sample Cases:
1) 499 ENTER 861 ENTER 10. After executing your program, the output should be 250.
2) 654 ENTER 456 ENTER 8. After executing your program, the output should be 222.

Machines Eligible: This contest is open to any and all RPL-style machines.

Rules: (aka the fine print)
1) The decision of the judge is FINAL. No appeals are allowed to anyone or anything.
2) The purpose of this contest is to have fun and learn and at least two contestants must submit an entry.
3) The speed results for all entries will be “normed” by counting the ticks for a loop. This loop program object

will be loaded into YOUR machine by the judge.
4) No custom built ROM or machine code can be built and used for this problem. Any already existing

functionality in the machine is ok. Sysevals, etc are allowed. Your program must be ONE OBJECT.
Everything must be self-contained in this one object. No pre-storing of constants, etc. is allowed.

5) You must also submit a legible listing of your program with your name on the listing. Your program must
run on your own machine.

6) Submission must be made by the end of the contest (Time is TBA).
7) By submitting a program, you agree to allow it to be shared with the community.
8) This is a contest between individuals, not teams. One submittal <> one person.
9) You may not access the internet for any help in any fashion. Do not cheat in any way. Do not check the

HP Museum Forum either.
10) You must be present to win.
11) If a point is unclear, ask immediately. No excuses for ignorance. Clarifications will be shared with the

entire group during the conference.
12) Assume default machine settings. Your program must stop with the default settings in place except as

noted above in the problem description. Default flag settings (except for flag –95) are assumed and must
be restored if changed again except as noted above.

13) The winning program will be the one for which size*speed (bytes*sec) is least, where the speed of
execution will be determined for one or more test cases chosen by the judge.

14) The program must be a (self-contained) single object in user code which does not call it self by name.
15) The stack, apart from input and output, must be left as found.
17) The program must not contain KILL or otherwise interfere with the programmatic testing and evaluation of

submissions, i.e., you cannot delete everything on the judge’s machine except your own program!
18) Happy Programming.

 Page 1 of 2 September 20-21, 2014

HHC 2014 Programming Contest

PRIME DATE PAIRS (PDP’s)
One contest, 3 winners (RPN, RPL, & PPL)

A "Prime Date" is a date which, when written in yyyymmdd form, is a prime number, e.g. 27
Sept 2014, because 20140927 is a prime number. It is the next prime date after HHC 2014.

A "Prime Date Pair" (hereafter PDP) are two prime dates which are consecutive calendar dates,
e.g. 19500331 (31 March 1950) and 19500401 (1 April 1950). Note that, unlike so-called
"prime pairs" which differ by 2 (e.g. 11 and 13), PDP’s differ by 1 calendar day. A “PDP date” is
any date which belongs to a PDP.

Programming Contest: Write a program which, given any year between 1583 and 9999,

outputs all the PDP dates in that year (and only in that year) in yyyymmdd format, or

mm.ddyyyy format, or dd.mmyyyy format, whichever you prefer.

Notes:

1. The winners are the 3 shortest programs: 1 in RPN, 1 in RPL, and 1 in PPL. RPN program size
will be counted in steps. RPL and PPL program size will be counted in bytes. This process is
somewhat imprecise, so the judge's decision will be final.

2. Some models do not contain native primality testing functions. Therefore, programs for
these models may call an external primality testing subroutine (e.g. NP in the PPC ROM, or any
other program or function in the machine), to help minimize the size of your program. The
purpose of this rule is to make it a fair contest, because the size of the external primality
tester will not be included in the calculation of the size of your program. However, the
primality testing subroutine must ONLY test primality. If you hide chunks of your main
program in the primality testing program, you will be disqualified. Obviously.

3. Speed is irrelevant; elegantly efficient code is the goal of this contest. However, all
programs must return the correct answers to qualify, so programs that run too long to be
judged will be disqualified.

4. As always, any program which violates the goal of elegant code packing (according to the
sole discretion of the contest judge) will be disqualified. For example, embedding commands
in a string, then executing the string, just to save a few bytes, is the antithesis of elegance.
Bonus points for making the judge gasp in awe. Negative points for making the judge gasp in
horror.

5. The judge reserves the right to input any years from 1583 through 9999. An already-
existing complete list of PDP’s from 1583 to 9999 will be used for judging.

 Page 2 of 2 September 20-21, 2014

HOMEWORK PROBLEMS

1. Easy: Prove that there cannot be a PDT (Prime Date Triple).

2. Harder: If everybody lived forever after being born, what percent of the population would
never have prime birthdays?

3. Difficult: Some years contain an odd number of PDP dates, e.g. 1978 (Dec 31st only) and
1979 (Jan 1st , Jan 31st, and Feb 1st only). Prove that there cannot be 4 consecutive calendar
years which all contain exactly an odd number of PDP dates.

HHC 2015 RPN Programming Contest

This time, it's personal

September 26-27,2015, Nashville Tennessee

Problem Description: For over 30 years, I have written and tweaked an HP-41 Caka FOCAL program that plays and scores the
game of Yahtzee. This game is included in the HP 41CL Funstuff rom with the label YATZ. However, that version, first published
in a 1985 PPC Joumal issue, has bugs in one of the scoring labels. Time to put that to bed forever with a bugless short routine
from the winner ofthis contest!

The game of Yahtzee requires the examination of several sets of results for five dice to allow for proper scoring, such as three of
a kind, full house, etc. The hardest to detect in a calculator program in my experience is the small straight, defined as four
sequential values in the group of five dice.

The complete list of all 16 possible small straights is shown below. These have been sorted in ascending order.

11234 12344 13456 23445 33456 34566
12234 12345 22345 23455 34456
12334 12346 23345 23456 34556

Input: The values of the five dice (integers 1, 2, 3, 4, 5, or 6) will be stored in memories 1through 5 in a random order.

Output: If asmall straight is present, return a O. If a small straight is not present, return anything other than azero. Preserving the
stack otherwise is irrelevant.

Sample Cases:
(A) 12345 stored in 1through 5 and then RIS should return O.
(B) 11123 stored in 1through 5 and then RIS should return something other than 0, even if stored as 21131.
(C) 12356, 11111, 41623, 22344, etc., and then RIS should return something (anything) other than O.

Machines Eligible: This contest is open to the following RPN machines: HP-41 C, 41CL, 42S, 34S - or other RPN machines
subject to the following: whatever machine you use, it must only include standard HP 41 functions. No function present in the 34S
or 42S or 41CL only is allowed. Standard vanilla HP 41 programming functions please - no 41CX, X-functions or synthetic
programming allowed either. If you can make the routine shorter using non-vanilla HP 41 functions, please let the judge know, but
the contest must be vanilla. You may not win the contest, but you'll have the judge's gratitude.

The winning routine returns correct answers and has the lowest number of bytes as determined by the routine being keyed into
an HP 41 C. If you use anon-HP 41c machine, it is the byte count on the 41 Cthat matters. Speed is not of the essence.

Rules: (aka the fine print)

1) The decision of the judge is FINAL. No appeals are allowed to anyone or anything.

2) The purpose of this contest is to have fun and learn and at least two contestants must submit an entry.

3) No custom-built ROM or machine code can be built and used for this problem. Any already existing functionality in the machine is ok.

5) You must submit a machine with your program already keyed in to the judge AS WELL as a legible listing of your program with your name on the

listing AND the machine. Provide byte count if possible. Machines with no names that are given to the judge are assumed to be ~ to the judge.
6) Submission must be made by the end of the contest (Time is TBA).
7} Assume the program will start running with step 001 and successive runs must work with pressing RlS.
8) By submitting a program, you agree to allow it to be shared with the community.
9) This is acontest between individuals, not teams. One submittal <> one person.
10) You may not access the internet for any help in any fashion. Do not cheat in any way. Do not check the HP Museum Forum either.
11) You must be present to win.
12) If a point is unclear, ask immediately. No excuses for ignorance. Clarifications will be shared with the entire group during the conference.
13) Assume default machine settings. Your program must stop with the default settings in place, unless they are changed by the provided sorting

routines.
14) 	 The routine must start with a LBL RR. If you need to use a sorting routine, two options are provided below. The sorting routine (if used) should be

external to your program listing. Any calls to asorting routine are included in your byte count, but the sorting routine itself is not. The sorting
routine must have afour-character label to keep things consistent.

15) The purpose of this contest is to learn and have fun. Happy Programming.
16) The shortest routine the judge has as of 5118/2015 is 72 bytes on an HP 41C and that includes 12 bytes for two XEQ SORT subroutine calls and

the global RR label. Your routine may need no sort calls, one sort call, two or more. That's up to you.

Sample sorting routines.

Routine one: To sort registers 1 - 5, key XEO SORT. Any calls to this routine count in your routine size total. Thanks to Jean­
Marc Baillard for this sorting routine from the hpmusem.org software library. Routine ON Erequires the ability to handle functions
such as ISG L and X<> INO L.

Routine two: To sort registers 1 - 5, key XEO SORT. This one is "fun" in that if an exchange between memories is made to sort
the registers, you will see the 0 flag indicator turn on and off in the display on an HP 41. This is suitable for any RPN machines
that cannot do the indirect and ISG commands used in Routine ONE. For more "fun", change CF 00 to OEG and SF 00 to RAO
throughout the routine. Then replace FS? 00 with FS? 43. See what happens as it sorts. Routine TWO should work on most RPN
calculators

Improvements to the sorting routine (if any) are adistraction. These are not part of the contest. The actual YZ Yahtzee program
will call an MCode SORT command. This is provided solely to give a level playing field and to avoid asking attendees to reinvent
the wheel.

Routine ONE
01 LBL "SORT" Routine TWO
02 1.005 01 LBL "SORT"
03 SIGN 02 LBL 01
04 LBL 01 03 CF 00
05 LASTX 04 RCL 04
06 LASTX 05 RCL 03
07 RCL IND L 06 RCL 02
08 LBL 02 07 RCL 01
09 RCL INDY 08 X>Y?
10 X>Y? 09 SF 00
11 GTO 03 10 X>Y?
12 X<>Y 11 X<>Y
13 LASTX 12 STO 01
14 + 13 RDN
15 LBL 03 14 X>Y?
16 RDN 15 SF 00
17 ISG Y 16 X>Y?
18 GTO 02 17 X<>Y
19 X<> INO L 18 STO 02
20 STO INDZ 19 RDN
21 ISG L 20 X>Y?
22 GTO 01 21 SF 00
23 END 22 X>Y?

23 X<>Y
24 ST003
25 RDN
26 RCL05
27 X<Y?
28 SF 00
29 X<Y?
30 X<>Y
31 ST005
32 X<>Y
33 ST004
34 FS?OO
35 GT001
36 END

http:hpmusem.org

HHC 2015 RPL Programming Contest

Write a program for the HP50g in RPN Mode which tests whether a non-empty list of positive
integers (type 28 objects) consists of distinct primes, replacing such a list in level 1 of the stack
with 1 (or 1.) if true and 0 (or O.) if false.

The winning program will be the fastest, with the speed of execution averaged over a few input
lists selected by the judges, each containing at least 100 positive integers.

The usual rules apply:

• The program must be a (self-contained) single object in user code which does not call
itself by name

• Default flag settings (except for flag -95) are assumed and must be restored if changed

• The stack, apart from input and output, must be as found

• The program must not contain KILL or otherwise interfere with the programmatic testing and
evaluation of submissions

• Your program must be transferred to the judges' machine under some identifying 3-letter
name before the announced deadline

• The purpose of the contest is to have fun and the decision of the judges is final

